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Abstract Rat liver is unique in secreting very low density lipo-
proteins (VLDL) with three size-isoforms of apolipoprotein B:
PI and PIII correspond to B-100 and B-48, respectively, while
PII is slightly smaller than PI and has no counterpart in other
species. Antibodies against a fusion protein corresponding to the
extreme C-terminal region of PI fail to react with PII, suggest-
ing that the latter lacks this moiety. [**S]Methionine-labeled
perfused rat liver and isolated hepatocytes secrete labeled PII,
but intracellular apoB contains only PI and PIIL. The absence
of labeled PII from Golgi VLDL, and the absence of continued
PII production within the plasma compartment, strongly sug-
gest that PIII-containing VLDL are formed by a one-time pro-
teolytic processing of a certain proportion of PI-containing
VLDL at the time of secretion. In contrast, polysome run-off
translation experiments and analysis of polysome-bound nascent
apoB chains show that both rat liver and intestinal polysomes
release PITT-sized peptides directly at the appropriate point of
elongation, in a manner incorpatible with their formation by
posttranslational processing. B} These results strongly suggest
that the large (PI, B-100) and small (PIII, B-48) apoB peptides
are translated from separate mRNAs. Thus, although both PII
and PIII are C-terminally truncated products of PI, the
mechanisms involved are entirely different. — Reuben, M. A.,
K. L. Svenson, M. H. Doolittle, D. F. Johnson, A. J. Lusis,
and J. Elovson. Biosynthetic relationships between three rat
apolipoprotein B peptides. J. Lipid Res. 1988. 29: 1337-1347.

Supplementary key words rat apoB C-terminal sequence * proteo-
lytic processing of PI  separate PI and PIII mRNA

Mammalian triglyceride-rich lipoproteins contain
apoB, which appears to be obligatory for their assembly
and/or secretion, since VLDL and chylomicrons are ex-
clusively made in liver and intestine, the only adult tissues
capable of expressing apoB (1, 2). Several years ago a
number of laboratories independently reported the exis-
tence of two major size-isoforms for apoB (3-7). In
humans and most other mammals, the larger (B-100, PI,
or By) and smaller (B-48, PIII, or B)) forms are produced
almost exclusively by the adult liver and intestine, respec-
tive (8-10). However, unlike other rodents such as guinea
pig and hamster (Elovson, J., and R. Kannan, unpub-

lished results), the rat and mouse synthesize comparable
amounts of both larger and smaller apoB peptides in their
livers (2, 4, 6, 7, 11, 12). Whether or not there is an iden-
tity between the hepatic and intestinal forms remains to
be established by direct sequencing of their respective
N-terminal and C-terminal amino acids. In addition,
samples of human plasma LDL may contain two other
apoB peptides, referred to as B-74 and B-26 in the centile
nomenclature (3, 8); however, these appear to be artifacts
of kallikrein and/or thrombin cleavage of B-100 during
LDL isolation (13). In contrast, rat plasma apoB differs
further from that of all other species examined so far
(Elovson, J., and R. Kannan, unpublished results) in that
its large isoform invariably runs as a doublet on SDS-
PAGE, with the slower component comigrating with
human B-100. We have called the faster-migrating compo-
nent rat apoB P(eptide)II, with rat PI and PIII cor-
responding to human B-100 and B-48, respectively, and
also refer to the larger isoforms collectively as PLII (4).
PII has been referred to as B-95 by others (14); however,
the rat nomenclature is retained here.

The structural and biosynthetic relationships between
the various apoB peptides and their functional correlates
remained unsettled even after the recent cloning and se-
quencing of human B-100 (15-19). Previously available
evidence strongly suggested that B-48 was coextensive
with the N-terminal moiety of B-100 (18, 20-22).
However, as discussed below, neither posttranslational
cleavage nor differential splicing of the transcript from the
single apoB gene seemed able to account for B-48 synthe-
sis. This impasse has now been resolved: Powell et al. (23)

Abbreviations: VLDL, very low density lipoproteins; LDL, low den-
sity lipoproteins; SDS, sodium dodecyl sulfate; PAGE, polyacrylamide
gel electrophoresis; DMEM, Dulbecco's minimal essential medium.
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and Chen et al. (24) have independently demonstrated a
single C to U change in B-48 mRNA, which converts a
glutaminey 53 codon in the B-100 sequence into an in-
frame stop codon, presumably through a novel posttran-
scriptional mechanism. We report here some findings
concerning translational and posttranslational events that
produce three distinct apoB peptides in the rat. The
results in both rat liver and intestine are consistent with
the mechanism proposed by Powell et al. (23) and Chen
et al. (24) for the generation of human and rat intestinal
B-48/PIII; in contrast, they show rat PII to be a posttrans-
lational cleavage product of rat PI. Some of these results
have been previously presented in abstract form (25).

MATERIALS AND METHODS

Cloning

Rat apoB clone2, originally isolated by antibody
screening of a rat liver cDNA library in lambda gtll (21),
was subcloned into the TrypE expression vector (26) and
transformants were isolated by antibody screening. The
larger rat apoB clone rb9e, isolated by rescreening the
original lambda gtil library with clone2, was sequenced
by the dideoxy method of Sanger, Nicklen, and Coulson
(27) after subcloning of restriction fragments into mpl8 or
-19; both universal and sequence-specific oligonucleotide
primers were used. cDNA sequences were assembled and
analyzed using the University of Wisconsin Genetic
Computer Group software package (28, 29).

Antibodies

Rat PLII and PIII were prepared from delipidated
Triton-'VLDL, by preparative SDS-PAGE as previously
described (30). The TrypE-clone2 fusion protein was
similarly purified from the insoluble fraction of bacterial
lysates.

Rabbit antibodies raised against rat P1,II were affinity-
purified on Sepharose-coupled rat PLII. A portion of
these antibodies, which recognize all three apoB peptides,
was rendered specific for the epitopes present only on
PLIL by exhaustive absorption with Sepharose-PIIL. A
second portion was rendered specific for epitopes present
only on PI by absorption to and elution from Sepharose-
clone? fusion protein (see below). Similar antibodies were
also raised directly against clone2 fusion protein, and
were affinity purified in the same manner.

Tissue labeling experiments

Liver perfusion experiments. Rat livers were pulse-labeled
by recirculating perfusion for 15 min with 1 mCi/g
[**S]methionine, as described elsewhere (31). In
pulse/chase experiments, this was followed by single pass
perfusion with DMEM supplemented with 1 mM
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methionine at a flow rate of 2 ml/min per g liver. At
selected times, chase efluent from the liver was collected
for analysis of VLDL apoB (see below). Perfusion media
were continuously gassed with 95:5 Oy,-CO; at 37°C.

Isolated rat hepatocytes. Isolated rat hepatocytes obtained
by collagenase perfusion (32) were resuspended in 10 mM
HEPES in Krebs-Ringer bicarbonate and preincubated
in 95:5 O,-CQ, for 5 min at 37°C, using a Dubnoff
shaker. Aliquots of about 107 cells in 1 ml were pulsed
with 0.2 mCi [**S]methionine; after 20 min, cells were
chased by washing once in DMEM, followed by another
hour’s incubation in DMEM supplemented with 1 mM
methionine. Cells and medium were processed separately
for analysis of intra- and extracellular VLDL apoB, as
described below.

Rat intestinal slices. Slices were prepared and labeled as
described (2).

Subcellular fractionation. All solutions contained 2 mM
phenylmethylsulfonyl fluoride, 0.01% soybean trypsin in-
hibitor, and 0.001% each leupeptin, pepstatin, antipain,
and chymostatin. Tissues and cells were homogenized in
10 volumes of ice-cold 0.25 M sucrose, using a Polytron
operated at haif-maximum speed. Total microsomes (33)
and a light Golgi fraction (34) were prepared as described.
Where indicated, the intracisternal contents of micro-
some/Golgi fractions (perfused liver) or total homogenate
(isolated hepatocytes) were released by treatment with
sodium carbonate (35), followed by ultracentrifugal flota-
tion at saline density to isolate nascent VLDL particles.

Polysome-bound peptides. To obtain nascent polysome-
bound apoB peptides, total polysomes were isolated from
methionine-labeled perfused livers and intestinal slices by
the magnesium precipitation method (36). The labeled
nascent chains were released by boiling in 1% SDS in 0.1
M Tris-HCl, pH 9, followed by quenching with Triton
X-100 and sodium sarcosylate to final concentration of 3,
1, and 0.3% of Triton, sarcosylate, and SDS, respectively.

Polysome run-off translation in vitro

Unlabeled rat liver and intestinal polysomes (4 Agg
units) were incubated with 70 uCi [**S]methionine
(Amersham) for 60 min at room temperature in 0.135 ml
wheat germ lysate reaction mixtures, as suggested by the
supplier (BRL), with addition of 0.002% RNasin, 50
KIU Trasylol, and 0.0025% each of pepstatin, leupeptin,
chymostatin, and antipain.

Immunoprecipitations

All samples were made to a final concentration of 3, 1,
and 0.3% of Triton X-100, sodium sarcosylate, and SDS,
respectively, in the presence of protease inhibitors as
above, followed by removal of insoluble residues as needed
at 100,000 g, using thick-walled polycarbonate tubes in the
Beckman 40.3 rotor. Lysate aliquots were treated with ex-
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cess antibodies on ice for 1 hr as indicated, followed by an
excess of SDS-washed Staphylococcus aureus cells for another
15 min. After washing, the precipitated proteins were
released by boiling in 1% SDS, 50 mM Tris-sulfate, pH
6.5, 5 mM dithiothreitol, and analyzed by SDS-
PAGE/fluorography (Enhance, NEN) as indicated in
figure legends.

ApoB secretion in vivo

Adult male rats received a bolus of 600 mg Triton
WR-1339/kg body weight plus 1 mCi tritiated leucine
through jugular cannulas. At the indicated times, 0.5-ml
samples of blood were withdrawn into syringes containing
1 ml 2 mM EDTA| pH 7.4, with the above cocktail of pro-
tease inhibitors, and stored on ice until completion of the
experiment. Blood cells were removed by low-speed cen-
trifugation in the cold, and the VLDL fractions were col-
lected by overnight centrifugation at 100,000 g in the
Beckman 40.3 rotor, using thick-walled polycarbonate
tubes. Aliquots containing 5 to 20 ug apoB were electro-
phoresed on SDS-PAGE tube gels, and stained, scanned,
sliced, and counted for *H as described (4, 34).

RESULTS

Relationship between rat apoB PI and PII

Our original Western blot analysis of rat apoB clone2
(21), showed that its fusion protein product was recog-
nized by antibodies specific for the C-terminal moiety of
rat PLII, which is absent from rat PIII. To confirm this
assignment, the clone2 sequence was subcloned into the
TrypE vector for more efficient expression. Fusion protein
purified by preparative SDS-PAGE was used to raise anti-
bodies in rabbits, and to prepare an immunoabsorbent by
coupling to Sepharose. The latter was used to immuno-
select those antibodies in the original antiserum against
rat PLII which recognized the clone2 epitopes. Fig. 1
shows a Western blot of standard rat VLDL apoB (pre-
pared as described in reference 4) stained with these vari-
ous antisera. All three peptides react with antibodies
against rat PLII (lane 1), while the subclass of antibodies
immunoselected on clone2 fusion protein shows the ex-
pected lack of reactivity with PIII (lane 2). In addition,
however, these immunoselected antibodies also fail to
react with PII (lane 2). Furthermore, the antiserum raised
against the fusion protein itself shows the same specificity
(lane 3). Thus, clone2 encodes a region of rat PI that is
absent from PII, as well as from PIII.

As mentioned above, the mobility of PIT on SDS-PAGE
corresponds to that of a peptide about 5% smaller than
P1/B-100. Differences in carbohydrate content between PI
and PII cannot be excluded, but the finding that PII also
is slightly retarded compared to PI on gel filtration in 6

1 23

Fig. 1. Epitopes expressed on rat apoB clone2-lacZ fusion protein are
absent from both rat apoB PII and PIII. Western blot of rat VLDL apoB
stained with: antiserum against rat PLII (lane 1); the same antibody
affinity-purified on immobilized apoB clone2-lacZ fusion protein (lane 2);
and antibodies raised against the apoB clone2-lacZ fusion protein (lane 3).

M guanidine hydrochloride (37) suggests that the PII
peptide in fact is smaller than PI. The location of clone2
in the 3' moiety of the rat apoB cDNA sequence was
therefore examined, to determine whether loss of the cor-
responding epitopes from PII could be accounted for by
a simple truncation of PI to form PII. For this purpose the
original rat liver library was rescreened with the clone2
insert, and a larger clone, rb9, which contained 3kb of
the 3'-most region of rat apoB mRNA, was selected for
sequencing. As shown in Fig. 2A, this places the epitopes
coded for by clone2 between 381 and 205 amino acid
residues from the C-terminus of rat PI. Assuming PI to
be the same size as human B-100, these positions cor-
respond to the C-termini of rat B-91 and B-95, respec-
tively, i.e., in range of the B-95 estimate for PIIL.

The rat 3' sequence was also compared to the human
counterpart, as well as to the recently reported chicken
sequence in this region (38). As shown in Fig. 2B, the C-
terminal 230 amino acids in the rat are about 80% identi-
cal to the human sequence. However, the preceding 80
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Comparison of C-terminal apoB amino acid sequences from rat, human, and chicken. Computer alignment was done using the University
of Wisconsin Genetic Analysis software programs (28). Homologies are indicated between human and rat as well as chicken and rat sequences. There
are an additional 26 identities between the chicken and human sequences which are not marked. The human and rat share the same termination
codon while the chicken sequence goes beyong this termination site by 72 amino acids (remaining chicken amino acids are not shown). Note that
numbering refers to residue positions compared; thus, the C-terminal phenylalanine in the rat sequence is numbered 1025, corresponding to the 989
amino acids coded for by clone rb9e plus the 36 residues worth of gaps introduced by the sequence alignment.
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Fig. 2C. Kyte-Doolittle hydrophobicity plots for rat, human and chicken apoB sequences. Hydrophobic plots were first run on the entire human

and rat sequences, and lined up by introducing gaps in the rat hydropathy plot to correspond to gaps shown in the human:rat sequence comparison
(see Fig. 2B).
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amino acids show only about 10% identity, and contain
4 cysteines without human counterparts. The remaining
650 amino acids towards the N-terminus are about 70%
identical to the human sequence, not counting a 25 amino
acid deletion in the rat. Altogether, including conservative
substitutions, and excluding the deletions and the highly
divergent region, the rat sequence shows about 80% ho-
mology with the human, but retains only 1 of 4 human
cysteines and introduces 6 new ones. Specifically, the
overall picture is one of near-perfect retention of the
amphipathic motifs throughout, as shown by the Kyte-
Doolittle plots (Fig. 2C). Although lower overall, the
degree of homology between the rat and chicken se-
quences is very similar to that between rat and human
(Fig. 2B), as is the overall amphipathic motif (Fig. 2C).

Loss of a C-terminal region from rat PII could occur
either at the nucleotide or protein level, most likely by al-
ternative splicing or proteolysis, respectively. To distin-
guish between these alternatives, the labeling of three rat
apoB peptides in rat liver was next examined. Fig. 3A, left
panel, shows the results of immunoprecipitations from a
lysate of total liver homogenate after a 15-min perfusion
with [**S]methionine. As expected from their specificity
(Fig. 1), antibodies against clone2 fusion proteins precipi-
tate only labeled PI (lane 2). However, although anti-
bodies against PLII are capable of reacting with all three
rat peptides (Fig. 1, lane 1), the corresponding immuno-
precipitate contains only labeled PI and PIII, but no
labeled PII (Fig. 3A, lane 1). Thus, little or no PII was
synthesized during the 15-min pulse. This would immedi-
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Fig. 3. Biosynthesis of rat apoB PII. A: PII production by perfused rat liver and isolated hepatocytes. SDS-PAGE
fluorograms of immunoprecipitated apoB peptides separated on 5% acrylamide SDS minigels. Perfused livers (left
panel) were pulsed by recirculation with [**S]methionine for 15 min and one such liver was used to prepare the
homogenate sample for lanes 1 and 2. A second liver was chased by single-pass perfusion with unlabeled medium
for another 30 min, with collection of perfusate samples for lanes 3 and 4 during the final 5 min; this liver was then
used to prepare the sample of Golgi VLDL for lane 5. Isolated hepatocytes (right panel) were pulsed for 2 hr with
[**S]methionine. Medium and cells were processed as described in Materials and Methods to analyze labeled apoB
peptides on nascent VLDL particles. Lane 6: medium VLDL. Lane 7: cellular VLDL. Immunoprecipitations were
performed with affinity-purified antibodies against rat apoB (lanes 1, 3, 5, 6, 7) and rat apoB clone2-lacZ fusion
protein (lanes 2 and 4). B: ApoB PI and PII accumulate in parallel in plasma VLDL of Triton-treated rats, without
further processing in the circulation. Closed symbols: PI; open symbols: PII. Abscissa: time after intravenous injec-
tion of Triton WR-1339. Ordinate: pg VLDL PI and PII per ml blood.
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ately exclude synthesis of PII from a separate mRNA,;
rather, it suggests that PII is formed by late posttransla-
tional processing of PI. This was confirmed by analyzing
the labeled apoB peptides of nascent VLDL in the Golgi
fraction isolated from a perfused liver after a 15-min pulse
followed by a 30-min chase period. As seen in Fig. 3A,
middle panel, apoB secreted into the single-pass perfusate
during the last 5 min of the chase contains labeled PII
as well as PI and PIII (lane 3); however, the Golgi
VLDL contains only the latter two (lane 5). Thus, it ap-
pears that processing of PI to PII occurs after passage of
PI-containing VLDL through the Golgi secretory vesi-
cles, ie., during or after their externalization from the
hepatocytes. The actual locus and enzymatic machinery
responsible for processing is unknown. However, it does
not appear to require the presence of either liver Kupffer
or endothelial cells, since processing also is performed by
isolated hepatocytes (Fig. 3A, lanes 6, 7). Nor does it re-
quire contact with serum or plasma, since it occurs during
single-pass perfusion with serum-free perfusate. Further-
more, as shown in Fig. 3B, when the removal of newly
secreted rat VLDL is blocked with Triton WR-1339 in
vivo PI- and PII-containing VLDL accumulate in paral-
lel in plasma for at least 2 to 3 hr. It is interesting to note
that conversion of PI to PII is greater in fasted as com-
pared to fed animals (Fig. 3B); however, in neither case
does processing continue once the particles have been
secreted. In keeping with this, the [*H]leucine specific ac-
tivities of the two peptides are also equal at each timepoint
(data not shown).

Relationship between rat apoB PI and PIII

As mentioned above, the rat is unusual, in that a
PIII/B-48-sized protein is produced in the liver as well as
in the intestine. In this regard we (2) and others (39) have
shown that intracellular apoB of amino acid-labeled adult
rat intestine contains only labeled PIII, while that of rat
liver contains both PI and PIII (2, and Fig. 3A, above).
We first approached the question of whether the same
mechanism was responsible for PIII formation in the two
tissues by analyzing labeled apoB peptides produced by
polysome run-off translation in vitro. As seen in Fig. 4,
the total apoB products from liver and intestinal poly-
somes show qualitatively very similar patterns of peptides
smaller than PIII. We interpret the ladders of discrete
bands as arising by stepwise, partial elongations of poly-
some nascent chains, caused by secondary structures in
the apoB mRNA. Note, however, that intestine shows no
product larger than PIII, while the liver pattern extends
up to the position for full-length PI. This is clearly incon-
sistent with posttranslational cleavage of PI to form PIII,
and instead suggests that PIII is translated from a
separate mRNA, which terminates elongation of nascent
apoB peptides once they reach PIII size. Conversely, in

the liver, but not in the intestine, a separate message codes
only for full-length PI/B-100.

It may be noted in Fig. 4 that the PI II-specific anti-
bodies (lane 4) only precipitate apoB products larger than
PIII, as expected from the fact that PIII corresponds to
the N-terminal moiety of PI. Thus, only nascent peptides
larger than PIII will express PI-specific epitopes.

The patterns of newly synthesized and nascent poly-
some-bound apoB peptides were also examined after
[**S]methionine labeling of intact hepatocytes and intesti-
nal slices in culture. This experiment incorporates mixed
extract controls to exclude the possibility that the absence
of intestinal apoB peptides larger than PIII is an artifact
of high proteolytic activity even in the presence of pro-
tease inhibitors. Fig. 5 demonstrates that this is not the
case, since mixing the labeled hepatocytes with an equal
weight of unlabeled intestinal slices prior to homogeniza-
tion does not reduce the ratio of labeled PI to PIII in the

1 2 3 4

Fig. 4. Run-off translations of rat liver and intestinal polysomes in wheat
germ lysates. Translation products were immunoprecipitated and analyzed
by SDS-PAGE/fluorography on 3 to 15% gradient gels. Lanes 1 and 2
show liver and intestinal products, respectively, immunoprecipitated with
antibodies against rat PLII. In a separate experiment liver products were
again immunoprecipitated with antibodies against rat PLII (lane 3), or
with the same antibodies rendered specific for PLII by passage over a PIII-
Sepharose column (lane 4). Note that the intestinal polysomes produce
no peptides larger than PIII (lane 2). Also note that PI,II-specific anti-
bodies only recognize epitopes on peptides larger than PIII (lane 4), con-
sistent with the fact that PIII constitutes the amino terminal half of PI.
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Absence of detectable newly synthesized apoB PI in rat intestine is not due to artifactural proteolytic degra-

dation. Samples of [**S]methionine-labeled rat hepatocytes, either alone (panel A) or mixed with unlabeled intesti-
nal rings (panel B), as well as a sample of [**S]methionine-labeled rat intestinal rings mixed with unlabeled rat hepato-
cytes (panel C), were identically lysed and prepared for immunoprecipitation as described in Materials and Methods,
using nonimmune serum (lanes 1), antibodies against rat PLII (lanes 2), and PI-specific antibodies raised against

rat apoB clone2 fusion protein (lanes 3).

polysome-free lysate immunoprecipitate (panels A and
B). Similarly, mixing the labeled intestinal slices with an
equal weight of unlabeled hepatocytes prior to homoge-
nization does not cause the appearance of labeled PI in
the immunoprecipitate from the polysome-free lysate
(panel C). It appears, therefore, that neither the action of
intestinal proteases nor of hepatic protease inhibitors can
account for the presence of PI in liver, but not in intestine.
Furthermore, when isolated from such mixed homoge-
nates, only liver polysomes contain nascent labeled PI
peptides (Fig. 6). Thus, synthesis of intestinal PIII pro-
ceeds by direct release of nascent apoB peptides at the ap-
propriate point of elongation, as expected for polysomes
containing a PIII-specific mRNA. Furthermore, PIII-
sized peptides appear to be released from the rat liver
polysomes, consistent with the presence of two hepatic
apoB mRNA populations, one coding for PI and the
other for PIII. Thus, this mechanism can also account for
PIII synthesis in rat liver.

DISCUSSION

ApoB is the largest mammalian peptide characterized
to date; however, very little is known about the relation-
ships between its functions and primary structure, includ-
ing the reason for the existence of the two major size-
isoforms. It is generally agreed that B-100, but not B-48,
binds to the LDL receptor (40), and sequence homologies
to apoE as well as differential effects of monoclonal anti-
bodies (15, 16, 20) strongly suggest that the receptor bind-
ing site in fact is located to the C-terminal half of B-100,

1344 Journal of Lipid Research Volume 29, 1988

which is absent from B-48. In regard to the other major
function for apoB, we have recently shown that PIII-
containing rat VLDL carry a single PIII peptide per par-
ticle (30). Thus, a single copy of the N-terminal half of the
PI/B-100 sequence appears to contain all the structural in-
formation required for the assembly of a rat VLDL parti-
cle, and presumably for rat and human chylomicrons as
well.

The significance of the PII isoform is obscure, and ap-
pears to be unrelated to either of the above apoB func-
tions, since so far it has only been observed in the rat
(Elovson, J., and R. Kannan, unpublished results). The
actual C-terminal truncation involved in its formation is

LIVER INTESTINE

1 2 3 1 2 3
' -Pl
Plll- Plll-
-
Fig. 6. Rat liver but not rat intestinal polysomes contain nascent apoB

peptides larger than PIII, up to and including full-length PI. Nascent
[**S]methionine-labeled polysome-bound apoB peptides from rat hepato-
cytes (left panel) or intestinal rings (right panel) were immunoprecipi-
tated as described in Materials and Methods. Antibodies in lanes 1, 2,
and 3 as in Fig. 5.
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unknown. The clone2 sequence, which codes for epitopes
missing from PII, lies between the C-termini of the
equivalents of B-91 and B-95, suggesting either that
“B-95” (14) is an SDS-PAGE overestimate of the actual
size of PII, or that the missing epitopes all are clustered
at the C-terminus of clone2. The latter contains the above
mentioned region which has diverged greatly between rat,
human, and chicken (Fig. 2A). Therefore it is quite pos-
sible, aithough not yet determined, that the rabbit se-
quence is also not conserved in this region, suggesting
that this particular rat sequence may in fact be a better
than average immunogen in the rabbit. The size consider-
ation also argues against substantial additional proteo-
Iytic processing at the N-terminus; however, the precise
portion of PI retained in PII can only be determined by
direct N- and C-terminal amino acid sequencing of the
latter, an impractical proposal at this time. In any event,
it is interesting that Windmueller and Spaeth (14) found
that PII-containing rat LDL were removed somewhat
more slowly from plasma than were those which contain
PI; the relationship, if any, of this finding to the fact that
the C-terminal sequence lost from PII is about 1000
residues away from the proposed LDL-receptor binding
site, is unknown.

The precise locus and mechanism of PII formation is
unknown. However, we have shown that PII is absent
from a Golgi secretory fraction at the time when it is
found in a single-pass liver perfusate, that it is produced
by isolated hepatocytes, and that no measurable further
conversion occurs in the plasma of Triton WR-1339-
treated rats. Taken together, these findings point to a
single-hit mechanism, with a certain one-time probability
for a nascent VLDL particle to have its PI peptide
processed to PII at the time of externalization from the
hepatocyte. In all these regards the PII processing appears
to be completely unrelated to the removal of the short N-
terminal peptides of apolipoproteins A-I and A-1I (41, and
references therein), which, although relatively slow,
progresses essentially to completion and occurs almost en-
tirely after secretion into the plasma. In contrast, PII is
formed by one-time removal of at least a 20 kDa C-
terminal peptide from at most about one-half of P at the
time of secretion from the hepatocyte, with no further
conversion in plasma.

The mechanism responsible for the formation of the
two major size-isoforms of apoB has long been elusive.
Our initial chymotryptic fingerprints of the rat peptides
suggested that PIII could be very similar or perhaps even
identical to a major portion of PLII (4). Although sup-
ported by the specificities of monoclonal antibodies for
B-100 and B-48 (42), progress in this area was first slowed
by the lack of sequence information for the two entities.
However, even successful cloning of rat and human apoB,
with determination of the full cDNA sequence of the lat-
ter (15-19), left this issue unresolved until very recently.

Thus, on the one hand, the major component of intestinal
apoB mRNA was found to have the same size as the 14
kb liver B-100 mRNA (9, 21, 43). However, while this sug-
gested posttranslational processing of B-100 to B-48, pulse
chase experiments and our polysome run-off translations
argued against this mechanism (2, 9, 25). On the other
hand, reports of the presence of smaller and variable
amounts of a shorter intestinal B-48 message (19, 43, 44)
were difficult to evaluate, since the sequence of the single
apoB gene (45) did not provide for the alternative splicing
needed for its synthesis. This impasse has recently been
resolved by the finding (23, 24) of a single C to U change
in B-48 mRNA, which converts a glutamine,,ss codon in
the B-100 sequence into an in-frame stop codon, presuma-
bly through a novel posttranscriptional mechanism. It is
shown here that rat intestinal polysomes contain no pep-
tides larger than PII1/B-48, while liver polysomes contain
nascent apoB peptides of all lengths up to full-length
PI/B-100, and that this difference does not reflect greater
proteolytic degradation in the intestinal sample. These
results are incompatible with posttranslational cleavage of
PI/B-100 to form PII/B-48, and strongly suggest that the
two apoB peptides are the products of separate messages.
Thus, they provide independent support at the transla-
tional level for the unprecedented mechanism proposed
by Powell et al. (23) and Chen et al. (24). How this poten-
tially lethal mechanism may have evolved, and how
B-48/PIll-producing cells are able to control it, is com-
pletely unknown at this time. 8
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